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A system of equations of the shock structure in an elastic-plastic medium is con- 
sidered. It is assumed that volume strain occurs elastically, and the shear strain 
equations are a combination of Hooke’s law in differential form, and the plastic 
flow law with a plasticity limit which is a nondecreasing function of the pressure 

[l]. The assumption that the properties of the thermodynamic functions for re- 
versible processes can be carried over to the irreversible case permits making a 

number of deductions about the solutions of the structure equations and the char- 

acter of the singularities of these equations. Conditions are obtained which the 
thermodynamic functions of the material,and the initial and finalstates should sati- 
sfy in order for shock structure to exist. Such an analysis of the shock front struc- 
ture is contained in [2] for media with a global stress tensor. The considerations 

of [Z] are extended naturally to the case of the existence of a unique stress-strain 
dependence for the uniaxial strain of solids. 

The system of equations describing the behavior of a material in which the volume 

strain is purely elastic but part of the infinitesimal shear strain can occur plastically 

contains the equations expressing the conservation laws and the shear strain equation n]. 
Hence, the system of equations of plane one-dimensional stationary motion of an elastic- 
plastic material with viscosity and heat conductivity taken into account is 

G=-p+q 

$+-t +x4-,,g - dg] =o 

u$ +hq=4:3G$ e(y) = ( 1 Y>O 
0 Y<O 

:sGq~-zzhh'~)e[q"-h'(p)]e{q[4/~G~ -f-(-I)“%‘~]) 

Here p is the hydrostatic pressure, o is the normal stress, q = 6 + p the value of 
the deviator component of the stress tensor on an area with normal directed along the 
flow axis towards increasing z; G is the shear modulus of the material, x the thermal 
conductivity, E the specific inner energy, u the particle velocity in the coordinate 
system connected to the shock front. A dissipative mechanism analogous to a viscous 
mechanism is given by the Landau dissipation tensor [3] 

cii’ = 2q (eij - ‘/$ijekfJ + Sekkhij, CL E “ic3q + 5 

where 7 and [ are the first and second coefficients of viscosity. The plasticity condi- 
tion is 
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J = l/zSijsij = 3i*hZ (p) 

Here J is the second invariant of the stress tensor, h’ (p) > 0; we assume that 

h (P) = hr (P), r = 1 (r = 2) if plasticity is by shear with compression (with rarefac- 
tion), q = (--I)%, (p) in the state of plasticity by shear. We consider the viscous 

and plastic dissipation to occur in parallel. 

Let us integrate once in the system (1) by assuming that the gradients of all the quan- 
tities tend to zero as z -+ - 00 and x +- 00 , and the values of the quantities them- 

selves equal the values ahead of and behind the shock-wave front, respectively. Denot- 
ing the stream density by j , we have 

u = jv, 
.dv 

Wz=P - 4 + i2v - a = fl (4 PI Q) 

3c ‘g = j (E - 1/2 j2v + xv - f3) = jF (v, p, q) 2 +?$ q = g $, (2) 

h, =L 
211~ ($7) 4/3 Gq$ - vhh’ $$e [q2 - h2 (p)] e(q [;/3G$ + (-l)‘+%‘v g]} 

a = PO - qo + j2vo = Pl - 41 + j2s 

B = Eo - 80 (PO - qo) + %j2vo = E, - VI (Pl - 41) + ‘l,j2s 

(3) 

Here a, p are the constants of integration, and the subscript zero refers to the state 
ahead the shock and one to the state behind the shock. The shocks are obtained as the 
limit of the flows under consideration. 

In contrast to gasdynamics, in one-dimensional flows, the state of the substance is 
characterized by values of not two, but three quantities, the shear and normal stresses 

and the density, say. or p, q, v. Hence, even in the case of a single shock crossing two 
relations on the shock (3) are not sufficient to determine the state behind the shock by 

means of data on its intensity and state ahead of the shock. As will be clear from the 
sequel, considerations of stability of the shock crossing are also insufficient to isolate a 
single shock crossing. 

The fundamental thermodynamic identity for reversible processes is 

TdS=dE+pdv-_&dJ 

Furthermore, let us consider E, T and the entropy S per unit mass to be functions of 

V, p, J (or v, p, q), G = G (v, J). Since dE and dS are total differentials, we 
obtain 

El, = TS,, E, = TS, -- p, Ej = TSj + g (g = ll,v I G) 

TVS,-TVS p = 1, TJS, = T,SJ, TJS, - T,SJ = g, (4) 

Let us take a hypothesis analogous to that used in examiningaviscous fluid that the rela- 
tionships (4) are conserved for the irreversible case (for plastic strain). We assume below 

that S, > 0 and dG I &I < 0, from which SJ > 0 follows. 
Let us examine trajectories of the system (2) in the space of the variables V, p, q. 

We introduce the surfaces F, h, (r = 1, 2), II, H given by the equations 

F (v, p, q) = 0, q = (-I)‘& Cp), n (v, P> q) = 0 
H = E - E, + 1/2 (6 + ~0) (~0 - v) = 0 

Here H is the surface of the shock adiabat of the substance. let QM denote the 
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integral surface of the equation dg / dv = 2/sg passing through the point M. The 
asterisk on a symbol will denote the partial derivative and means that the corresponding 
value is calculated either along some QM or along h,. (r = 1, 2). Hence, for any 
functions 0 (v, p, q), in a domain of elasticity by shear DV* = mV -/- @Jq / g, 

a?,* = Qt P, and in the plastic flow domain @,* = 0 zi, @ P* =a P + s/&z’@ J. 
In this notation an equation rlv 

ii= 

T,*dp 

P/At; 1 1c - I’,*11 (5) 

can be obtained from the system (2). 

The following can be asserted relative to the properties of the integral curves (2) and 

the properties of the surfaces F, n, H (the subscript L denotes the derivative along 
the integral curve). 

1. The sign of the quantities (dp / dv)L* $- T, * / T,,” agrees with the sign of the 
product FII; (dv / dp) L* is only at points of II not singular for (2). 

2. The sign of the quantity (d2v / dp’)L* agrees at points of n with the sign of 

p (v7 P, q). 
3. (dp / dv)L* < 0 where F (a, p, q) II (v, p, q) < 0. 
4. The quantity (dp / dv)L* + F,* I F,* is positive at points of the surface F 

in the domain of elasticity by shear and on h, everywhere that D (v, p, q) < 0, and 
can change the sign in the domain of elasticity by shear and on h, at points where 

n (V, p, q) > 0. This quantity is positive in some neighborhood of the singularities in 
the domain of elasticity by shear. 

5. The surfaces F and H intersect at points of the surface ii and only there. 
Outside of n the surfaces F and H lie on one side of 11. 

6. T (dS / dv)F * = II (v, p, q) and dS = TdS at points of LI. 
A section of the integral curve (5) corresponds to compression (rarefaction) if it lies 

under (over) II . 
Let us investigate the singularities of Eq. (5) which are solutions of the system : 

F (v, p, q) = 0, n. (v, p, q) = 0, -hh, (p) < q G hz (P) 

by assuming that h,’ < 1. We consider that the singularity lies together with its neigh- 

borhood either in the domain of shear elasticity or in the domain of shear plasticity. 

In conformity with [4], the investigation of the singularities of (5) can be reduced to an 
investigation of the singularities of the first approximation system if the dete,rminant of 
the matrix of the first approximation system is not zero (in this case Y = na*Sp* - 
nP*&‘,*) . The quantity has the same sign as the scalar product of the normal to II 

at the tangent to a section of the surface r by the surface QAJ or h, directed towards 

increasing v. 
If Y # 0 at the singularity of (5). then the following can be proved : 

1. The singularity of (5) is a node if Y > 0 and a saddle if Y < 0 . 
2. A node-type singularity for (5) is always unstable. 
3. For exclusive directions 21,2 the inequalities 

-s,* I sp* < z1 < --III,* I rip* < 22 < 00 

are valid at the singular point in the case of a saddle, and 

-c*/np* < 51 <-s,*lssp*<z2 < ca 
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in the case of a node. 
4. let the domain D consist of points at which the inequality F (v, p, q) n (v, 

p, q) < 0 is satisfied. Then one of the exclusive directions always enters the domain 

D , wherethis exclusive direction is stable for the saddle case. 
5. For exclusive directions entering I, the approach to the saddle singularity is 

always possible on h %, and is known to be possible on h, if the inequality St, $- 

3/2h,h,‘SJ > 3/2h’gS, is satisfied at the singularity. 

The following assertions are valid for the case Y = 0 . 
6. The exclusive directions are 

21 = - IT,” / IIp*, 22 = (P~“S, i x - TV*&,*) / T,*IT,* 

7. An investigation of the nature of the singularity for Y = 0 reduces to an inves- 
tigation of the nature of the tangent to the surfaces n and F at this point. Let 

Then if n is odd and R(“) > 0 (@‘) < 0), the singularity is a node (saddle). If n 
is even and R(“) > 0 (R@) < 0), then upon approaching from the side u < v,, the 

trajectories will behave as at a saddle (nodal) point, and upon approaching from the side 

u > u. as at a noddle (saddle) point. 
Let us examine some singularity ikf of the system (2). If the inequality h, (PM) > 

qM > -h, (P M 1s satisfied for the point M , then its nature for (2) is the same as for ) . 
(5). If M lies on k,, then it should be characterized twice: as a singularity of (5) in 
the domain of shear elasticity, and as a singularity of (5) in the domain of plastic shear. 

For any two singularities Mk and Mr of the system (2) a curve can be constructed 
connecting Mk and Ml which we call n and denote by nI,,. To construct it we 
draw QM through each of the singular points Mk, Ml . If the shock crossing Mk + 
Ml is considered, then Ukr consists of segments of the intersections QM~, QM, with 

rI (one or both can be missing if one or both singularities lie on h,) and segments 
of the intersections between n and h,, where r is selected so that for motion from M, 
to M, over h, along KIkl the domain of shear elasticity is on the right. 

Assuming that the approach along the exclusive direction entering D to the singular- 
ity corresponding to the final state is possible, the following assertions can be proved: 

1) Let there be just one breakpoint on II,,, corresponding to the transition from ela- 

sticity to plasticity by shear for the motion MO -+ Ml or let there not be such a break. 
If there are points on n o1 where F (v, p, q) = 0, then no continuous solution of (2) 
corresponding to the shock MO -+ fk?, exists. ln considering rarefaction shocks we hence 
assume that the temperature on the section between MO and M, of the curve of the 
intersection of F with the same surfaces with which H intersects to form nOi, is eve- 
rywhere less than in at least one of the points of II,,. 

2) Let there be one breakpoint on II,, corresponding to the transition from elasti- 
city to plasticity during motion from M, to Ml, or let there not be such a break. Let 
F (v, p, q) (v, - v) > 0 on II,, everywhere, and let the condition formulated in (1) 
for the temperature be satisfied for the case of a rarefaction shock. Then there exists a 
sequence of continuous solutions of (2) corresponding to a sequence of shock crossings 
of the considered intensity which transfers the substance from the state MO into thestate 
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M,. If F hence has no common points with 11, then there exists a unique continuous 
solution of (2) corresponding to the shock crossing M, -+ M,. 

3) A singularity of (2) lying on h, and being a saddle point for (5) in the shear plas- 
ticity case is also a saddle point in the shear elasticity case. 

4) A sequence of shock crossings carrying over MO --+ Mi is impossible if a,,’ < 
pi’ ( ,’ . h pe ‘f U, 1s t e s cl IC volume at the intersection of (&, with the 7,~ axis) andMt@&. 

5) Let Q-la + QM~, Ml @ h,, ~1’ < ~0’. Then for the existence of a sequence 
of shock crossings M,-+ MI it is necessary and sufficient that a singularity M, exists 

on h, such that the condition (3) would be satisfied for the pair of points M,,IM, and 

MzMr . 
6) If singularities on hI which are saddle points for (5) in plastic shear are also sad- 

dle points for elastic shear, then compression shock crossings M, --f M, are possible 

only in states corresponding to the points MI on h, or in states corresponding to points 
MI such that QM, = QM,. 

Let us note that sufficient for the compliance with condition (6) is the validity of the 
inequality 

3/2 S$i (3/2 ghi’j2 - 1) > ‘12 ghi’sv - S, $9 

or the stronger constraint h (p) < 4/3G / (I - d 1nG / d In V) at the singularities. 
The conditions Y > 0 and y ,( 0 which must be satisfied for the initial and final 

states is none other than the condition for shock front stability. Let us note that these 
conditions can be satisfied even in the presence of the constraint (6) at points of the curve 
of intersection of F and fl in the domain of shear elasticity. 

When a continuous solution of (2) exists which corresponds to the shock crossing 
M, + MI with compression (rarefaction), the temperature along the integral curve 

increases (decreases) monotonously, and the entropy has an absolute maximum within 
the flow. 

An examination of the shock wave structure permits supplementing the system (3) by 
the missing boundary conditions in order to define the uniqueness of the solution (3) (in 
the case of the existence of a unique shock crossing). In fact, if the shock crossing is 
accomplished in the domain of shear elasticity, then M, lies on Q.ql,, where M’ is the 
point from which the shock crossing is completed at M,; if the shock crossing is accom- 

plished in the domain of shear plasticity, then q1 = (-1)’ h (p). Let specific depend- 

ences G (v, J), .E (v, P, d, S (2’: P, q) and the initial state of the medium character- 
ized by the point M, be given. In order to investigate the possible shock crossings from 

the point fi!, it is convenient to construct a curve 6~ (V, V,) in the 3 - V plane 
which is the dependence of o on v on the line of intersection of H with Vnfo and with 

h, (F = 1, .Z) at such points fif at which (-1)’ v’ (M)>(-1)‘r’ (~%f,). In the shear 
elasticity domain 6~ (v, v,) is given by the equality 

Here qrc (v, v,) is the solution of the equation dq / dv = 4/3G / u for q (v,) = qo. 
In the shear plasticity domain sIi (v, v,) can be obtained from 

E (u, P+ (4, (4% [P* (411 - Eo = ?_p (1: - &J 

where p* (5) is given implicitly by the equation 3 + p = (-1)’ h,. (p). The quan- 
tity n is mapped on the 5 - u plane by the ray HI, = c - S, + j” (v - u,) = 0. 
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Let us examine the point of intersection of n, and 5~ (V, VO). Corresponding to the 
possible shock crossings will be those points J;l/l, of the intersection of n, and on@, 

VO) for motion to which along the ray from :If, there are no points of QH to the left of 
the ray. Furthermore, if M lies in the shear plasticity domain with compression, then 
the condition Y (M) < 0 should be satisfied, where the calculations should be carried 
out for shear elasticity. If this condition is satisfied, then the shock crossing is unique. 

In particular, it is satisfied if (6) is satisfied. If Y (M) > 0 for shear elasticity, then 
a shock crossing of the same intensity is possible with the change in the character of the 
shear strain. This shock crossing can only be by a rarefaction shock crossing. To seek 
the state which is final, a branch of the curve 3~ [v, 2, (M)] corresponding to rarefac- 

tion can be constructed on the 5 - v plane. Its point of intersection with the ray nII, 

corresponds to the final state of the second shock crossing. 

The author is grateful to S, S. Grigorian for supervising the research and to G. Ia. Galin 
for useful discussion. 
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The tensor stress concentration coefficient connecting the stress on the boundary 
of an inhomogeneity in an anisotropic elastic medium with the external field is 

represented as the product of two factors. The first is universal for any inhomo- 
geneity and depends on the elastic constants of the medium and the inhomo- 
geneity, and on the normal to the surface. Its construction reduces to an algeb- 
raic operation of inverting a third-order matrix. The second factor is a constant 
tensor in the ellipsoid case, which is expressed in terms of the mean value of the 

first factor over the surface of the ellipsoid. Explicit formulas are obtained from 
the homogeneous and linear external fields. The cases of a cavity and rigid in- 
clusion are examined separately. For an arbitrary polynomial field the problem 


